Exploration der exponentiell gewichteten Moving Average Volatilität ist die häufigste Maßnahme für das Risiko, aber es kommt in mehreren Geschmacksrichtungen. In einem früheren Artikel haben wir gezeigt, wie man einfache historische Volatilität berechnet. (Um diesen Artikel zu lesen, lesen Sie unter Verwenden der Volatilität, um zukünftiges Risiko zu messen.) Wir verwendeten Googles tatsächliche Aktienkursdaten, um die tägliche Volatilität basierend auf 30 Tagen der Bestandsdaten zu berechnen. In diesem Artikel werden wir auf einfache Volatilität zu verbessern und diskutieren den exponentiell gewichteten gleitenden Durchschnitt (EWMA). Historische Vs. Implied Volatility Erstens, lassen Sie diese Metrik in ein bisschen Perspektive. Es gibt zwei breite Ansätze: historische und implizite (oder implizite) Volatilität. Der historische Ansatz geht davon aus, dass Vergangenheit ist Prolog Wir messen Geschichte in der Hoffnung, dass es prädiktive ist. Die implizite Volatilität dagegen ignoriert die Geschichte, die sie für die Volatilität der Marktpreise löst. Es hofft, dass der Markt am besten weiß und dass der Marktpreis, auch wenn implizit, eine Konsensschätzung der Volatilität enthält. (Für verwandte Erkenntnisse siehe Die Verwendungen und Grenzen der Volatilität.) Wenn wir uns auf die drei historischen Ansätze (auf der linken Seite) konzentrieren, haben sie zwei Schritte gemeinsam: Berechnen Sie die Reihe der periodischen Renditen Berechnen die periodische Rendite. Das ist typischerweise eine Reihe von täglichen Renditen, bei denen jede Rendite in kontinuierlich zusammengesetzten Ausdrücken ausgedrückt wird. Für jeden Tag nehmen wir das natürliche Protokoll des Verhältnisses der Aktienkurse (d. H. Preis heute geteilt durch den Preis gestern und so weiter). Dies erzeugt eine Reihe von täglichen Renditen, von u i bis u i-m. Je nachdem wie viele Tage (m Tage) wir messen. Das bringt uns zum zweiten Schritt: Hier unterscheiden sich die drei Ansätze. Wir haben gezeigt, dass die einfache Varianz im Rahmen einiger akzeptabler Vereinfachungen der Mittelwert der quadratischen Renditen ist: Beachten Sie, dass diese Summe die periodischen Renditen zusammenfasst und dann diese Summe durch die Anzahl der Tage oder Beobachtungen (m). Also, seine wirklich nur ein Durchschnitt der quadrierten periodischen kehrt zurück. Setzen Sie einen anderen Weg, jede quadratische Rückkehr wird ein gleiches Gewicht gegeben. Wenn also alpha (a) ein Gewichtungsfaktor ist (speziell eine 1 m), dann sieht eine einfache Varianz so aus: Die EWMA verbessert die einfache Varianz Die Schwäche dieses Ansatzes ist, dass alle Renditen das gleiche Gewicht verdienen. Yesterdays (sehr jüngste) Rückkehr hat keinen Einfluss mehr auf die Varianz als die letzten Monate zurück. Dieses Problem wird durch Verwendung des exponentiell gewichteten gleitenden Mittelwerts (EWMA), bei dem neuere Renditen ein größeres Gewicht auf die Varianz aufweisen, festgelegt. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) führt Lambda ein. Die als Glättungsparameter bezeichnet wird. Lambda muss kleiner als 1 sein. Unter dieser Bedingung wird anstelle der gleichen Gewichtungen jede quadratische Rendite durch einen Multiplikator wie folgt gewichtet: Beispielsweise neigt die RiskMetrics TM, eine Finanzrisikomanagementgesellschaft, dazu, eine Lambda von 0,94 oder 94 zu verwenden. In diesem Fall wird die erste ( (1 - 0,94) (94) 0 6. Die nächste quadrierte Rückkehr ist einfach ein Lambda-Vielfaches des vorherigen Gewichts in diesem Fall 6 multipliziert mit 94 5,64. Und das dritte vorherige Tagegewicht ist gleich (1-0,94) (0,94) 2 5,30. Das ist die Bedeutung von exponentiell in EWMA: jedes Gewicht ist ein konstanter Multiplikator (d. h. Lambda, der kleiner als eins sein muß) des vorherigen Gewichtes. Dies stellt eine Varianz sicher, die gewichtet oder zu neueren Daten voreingenommen ist. (Weitere Informationen finden Sie im Excel-Arbeitsblatt für die Googles-Volatilität.) Der Unterschied zwischen einfacher Volatilität und EWMA für Google wird unten angezeigt. Einfache Volatilität wiegt effektiv jede periodische Rendite von 0,196, wie in Spalte O gezeigt (wir hatten zwei Jahre tägliche Aktienkursdaten, das sind 509 tägliche Renditen und 1 509 0,196). Aber beachten Sie, dass die Spalte P ein Gewicht von 6, dann 5,64, dann 5,3 und so weiter. Das ist der einzige Unterschied zwischen einfacher Varianz und EWMA. Denken Sie daran: Nachdem wir die Summe der ganzen Reihe (in Spalte Q) haben wir die Varianz, die das Quadrat der Standardabweichung ist. Wenn wir Volatilität wollen, müssen wir uns daran erinnern, die Quadratwurzel dieser Varianz zu nehmen. Was ist der Unterschied in der täglichen Volatilität zwischen der Varianz und der EWMA im Googles-Fall? Bedeutend: Die einfache Varianz gab uns eine tägliche Volatilität von 2,4, aber die EWMA gab eine tägliche Volatilität von nur 1,4 (Details siehe Tabelle). Offenbar ließ sich die Googles-Volatilität in jüngster Zeit nieder, daher könnte eine einfache Varianz künstlich hoch sein. Die heutige Varianz ist eine Funktion der Pior Tage Variance Youll bemerken wir benötigt, um eine lange Reihe von exponentiell sinkenden Gewichte zu berechnen. Wir werden die Mathematik hier nicht durchführen, aber eine der besten Eigenschaften der EWMA ist, daß die gesamte Reihe zweckmäßigerweise auf eine rekursive Formel reduziert: Rekursiv bedeutet, daß heutige Varianzreferenzen (d. h. eine Funktion der früheren Tagesvarianz) ist. Sie können diese Formel auch in der Kalkulationstabelle zu finden, und es erzeugt genau das gleiche Ergebnis wie die Langzeitberechnung Es heißt: Die heutige Varianz (unter EWMA) ist gleichbedeutend mit der gestrigen Abweichung (gewichtet mit Lambda) plus der gestrigen Rückkehr (gewogen durch ein Minus-Lambda). Beachten Sie, wie wir nur zwei Begriffe zusammenfügen: gestern gewichtet Varianz und gestern gewichtet, quadriert zurück. Dennoch ist Lambda unser Glättungsparameter. Ein höheres Lambda (z. B. wie RiskMetrics 94) deutet auf einen langsameren Abfall in der Reihe hin - in relativer Hinsicht werden wir mehr Datenpunkte in der Reihe haben, und sie fallen langsamer ab. Auf der anderen Seite, wenn wir das Lambda reduzieren, deuten wir auf einen höheren Abfall hin: die Gewichte fallen schneller ab, und als direkte Folge des schnellen Zerfalls werden weniger Datenpunkte verwendet. (In der Kalkulationstabelle ist Lambda ein Eingang, so dass Sie mit seiner Empfindlichkeit experimentieren können). Zusammenfassung Volatilität ist die momentane Standardabweichung einer Aktie und die häufigste Risikomessung. Es ist auch die Quadratwurzel der Varianz. Wir können Varianz historisch oder implizit messen (implizite Volatilität). Bei der historischen Messung ist die einfachste Methode eine einfache Varianz. Aber die Schwäche mit einfacher Varianz ist alle Renditen bekommen das gleiche Gewicht. So stehen wir vor einem klassischen Kompromiss: Wir wollen immer mehr Daten, aber je mehr Daten wir haben, desto mehr wird unsere Berechnung durch weit entfernte (weniger relevante) Daten verdünnt. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) verbessert die einfache Varianz durch Zuordnen von Gewichten zu den periodischen Renditen. Auf diese Weise können wir beide eine große Stichprobengröße, sondern auch mehr Gewicht auf neuere Erträge. (Um ein Film-Tutorial zu diesem Thema zu sehen, besuchen Sie die Bionic Turtle.) Wie zu berechnen Weighted Moving Averages in Excel mit Exponential Smoothing Excel-Datenanalyse für Dummies, 2nd Edition Das exponentielle Glättungswerkzeug in Excel berechnet den gleitenden Durchschnitt. Die exponentielle Glättung gewichtet jedoch die in den gleitenden Durchschnittsberechnungen enthaltenen Werte, so daß neuere Werte einen größeren Einfluss auf die Durchschnittsberechnung haben und alte Werte einen geringeren Effekt haben. Diese Gewichtung wird durch eine Glättungskonstante erreicht. Um zu veranschaulichen, wie das Exponential-Glättungswerkzeug arbeitet, nehmen Sie an, dass Sie wieder die durchschnittliche tägliche Temperaturinformation betrachten. Gehen Sie folgendermaßen vor, um gewichtete gleitende Mittelwerte mit exponentieller Glättung zu berechnen: Um einen exponentiell geglätteten gleitenden Durchschnitt zu berechnen, klicken Sie zuerst auf die Schaltfläche Data tab8217s Data Analysis. Wenn Excel das Dialogfeld Datenanalyse anzeigt, wählen Sie aus der Liste den Punkt Exponentielle Glättung aus, und klicken Sie dann auf OK. Excel zeigt das Dialogfeld Exponentielle Glättung an. Identifizieren Sie die Daten. Um die Daten zu identifizieren, für die Sie einen exponentiell geglätteten gleitenden Durchschnitt berechnen möchten, klicken Sie in das Textfeld Eingabebereich. Identifizieren Sie dann den Eingabebereich, indem Sie entweder eine Arbeitsbereichsadresse eingeben oder den Arbeitsblattbereich auswählen. Wenn Ihr Eingabebereich eine Textbeschriftung enthält, um Ihre Daten zu identifizieren oder zu beschreiben, aktivieren Sie das Kontrollkästchen Beschriftungen. Geben Sie die Glättung konstant. Geben Sie den Glättungskonstantenwert in das Textfeld Dämpfungsfaktor ein. Die Excel-Hilfedatei legt nahe, dass Sie eine Glättungskonstante zwischen 0,2 und 0,3 verwenden. Vermutlich jedoch, wenn Sie dieses Tool verwenden, haben Sie Ihre eigenen Ideen, was die richtige Glättungskonstante ist. (Wenn you8217re ahnungslos über die Glättungskonstante, vielleicht sollten Sie shouldn8217t mit diesem Tool.) Sagen Sie Excel, wo die exponentiell geglättete gleitende durchschnittliche Daten platzieren. Verwenden Sie das Textfeld Ausgabebereich, um den Arbeitsblattbereich zu identifizieren, in dem Sie die gleitenden Durchschnittsdaten platzieren möchten. Beispielsweise legen Sie die gleitenden Durchschnittsdaten in das Arbeitsblatt-Feld B2: B10. (Optional) Diagramm die exponentiell geglätteten Daten. Um die exponentiell geglätteten Daten darzustellen, aktivieren Sie das Kontrollkästchen "Diagrammausgabe". (Optional) Geben Sie an, dass Standardfehlerinformationen berechnet werden sollen. Um Standardfehler zu berechnen, aktivieren Sie das Kontrollkästchen Standardfehler. Excel legt Standardfehlerwerte neben den exponentiell geglätteten gleitenden Mittelwerten fest. Klicken Sie auf OK, nachdem Sie festgelegt haben, welche gleitenden durchschnittlichen Informationen Sie berechnen möchten und wo Sie sie platzieren möchten. Excel berechnet gleitende Durchschnittsinformationen.
No comments:
Post a Comment